
Can Item Metadata help combat the Cold Start problem?

Abstract
The cold start problem in recommender systems arises when deal-
ing with new items with no prior interaction history, making it
challenging to generate accurate recommendations. This work ex-
plores whether incorporating item metadata can effectively address
this problem in game recommendations using user-game interac-
tions on the Steam platform. We leverage game metadata (genres
and price) alongside implicit feedback from user playtime data,
comparing five different recommendation approaches: traditional
Matrix Factorization (SVD), Factorization Machines (FM), hybrid
methods combining SVD/FM with K-Nearest Neighbors (KNN), and
a metadata-only approach using FM. An analysis of results show
that the SVD baseline shows strong performance on existing games
but degrades for new games, demonstrating the cold start problem.
Surprisingly, incorporating metadata through FMs doesn’t improve
performance, suggesting that with the Steam dataset’s scale (>5
million interactions), the collaborative filtering signal alone may
be sufficiently strong. The hybrid method which incorporate game
metadata (Method III) show significant improvements on items
prone to cold start problems through extending their base coun-
terparts, while the metadata-only approach (Method V) performs
similarly to Method II and IV, indicating that in this context, item
metadata provides limited additional signal beyond user-game in-
teractions.

Keywords
Recommender Systems, Factorization Machines, Implicit Feedback

1 Introduction
The "cold start" problem is an issue in recommender systems which
deals with how to work with recommendations on items or users
that have minimal or no interactions. As this problem is often not
handled by standard recommender algorithms such as Collabora-
tive Filtering models or Factorization Machines due to the fixed
user-item matrix constructed during training, there needs to be
alternatives to ensure new users or items still get robust recommen-
dations using whatever information is available. This work aims to
explore the use of standardized recommender system algorithms in
conjunction with item metadata to combat the cold start problem.

2 Dataset
This work uses the Steam User-Game dataset used in [7, 11, 13]
consisting of user-game interactions and game metadata obtained
from the Steam Web API.

2.1 User-Game Dataset
This dataset consists of user-game interactions in terms of the
overall hours played. The format of the data used is illustrated in
Table 1 and some of its basic statistics of the data is presented in

, ,

Table 2. Due to the absence of a explicit rating field in the dataset and
also on the Steam platform (besides a Thumbs Up/Down option),
this work decides to explore the use of a users’ playtime as an
implicit measure of how much they might like/dislike a game.

Table 1: Dataset Format

steam_id (User) item_id (Game) playtime_forever

76561197970xxxxxx 20 6
76561197970xxxxxx 300 4733
76561198329xxxxxx 304930 677

Observing Table 2, it is evident from the difference in the min
and max and the mean being much greater than median of pur-
chases per item, that data is right-skewed, implying some items
are very popular in comparison to others. This skew is also evident
in purchases per user, implying some users purchase way more
than in comparison. However, since these behaviours cannot be
considered abnormal, corrections are not made to these skews.

Another interesting statistic that is present in the dataset is
1,867,963 of the purchases (approximately 36% of all purchases)
result in no further interaction, i.e, user purchases a game and does
not play it. Since this behaviour could be due to various reasons
such as the game being free, bought during a sale, gifting, etc..., and
since these behaviours do not necessarily imply that the user does
and will not like this game, these rows are dropped from further
analyses.

Table 2: Dataset Statistics

Statistic Value

Total Users 88,310
Users who purchased at least one game 71,504 (80.9%)
Total Games 10,978
Total Purchases 5,153,209
Min (non-zero), Max purchases per user 1; 7762
Mean, Median purchases per user 58.35; 26
Min, Max purchases per item 1; 49,571
Mean, Median purchases per item 469.41; 43

Further analysis is carried out on the playtime data due to it
being the "field of interest". It comes as no surprise that the range of
playtime ranges from 1 to approx 6×106 hours. The extremely large
playtimes hours can be explained by online games or non-story
based games such as CS:GO, League of Legends which tend to have
much more repeat players in comparsion to story based games.
This is illustrated with two specific examples in Figure 1 where
the maximum playtime for the story-based game is around 104
hours compared to a large percentage of playtimes for the online
game lying between 104 and 105 hours. This difference in playtimes
ranges for varying game types and the extreme distribution of

, ,

values irrespective of the type of game (illustrated in Figure 2),
necessitates pre-processing before modelling.

(a) Assassin’s Creed II (Story-
based)

(b) CS:GO (Online)

Figure 1: Log-scale playtime distribution

Pre-processing of the data is carried out in multiple steps:
(1) Initially, extremely large playtime hours which can be con-

sidered outliers are removed using the Inter-Quartile Range
(𝐼𝑄𝑅) and Quartile 3 (𝑄3) of each game’s playtime if,

𝑝𝑙𝑎𝑦𝑡𝑖𝑚𝑒_𝑓 𝑜𝑟𝑒𝑣𝑒𝑟 > 𝑄3 + 1.5 ∗ 𝐼𝑄𝑅

(2) Due to the extreme range of playtime hours and the a normal-
like distribution on the log-scale plots, log-based normaliza-
tion is applied to the data next.

(3) Due to the uniform range preferred for rating prediction in
recommender system algorithms, we pre-process the data
for each game further using min-max scaling to [1, 5] using
the min and max playtimes of that game. A global min-max
scaling for all games is avoided due to the extremely varying
playtime ranges present for different games.

Figure 2: Log-scale playtime distribution for all-games

The distribution of the pre-processed data is visualized in Figure
3. This data which appears almost normally-distributed will be used
in further modelling for recommendation of games to users.

Figure 3: Pre-processed distribution for all-games

For the data split into training and testing sets, we use the fact
that Steam game IDs are numbered sequentially in order of
release. Using this, we split the data into three sets as follows:

• 𝑖𝑡𝑒𝑚_𝑖𝑑 <= 300, 000: Consists of approximately 80% of user-
game interactions. This data is further split randomly using
a 80-20 split into Train Set and Test Set I. These sets are
used as a baseline which is used for training standard rec-
ommender models. In these sets, since the testing is done
on a subset of the same overall set, it does not have to deal
with unseen games or users (except those maybe split during
random shuffle).

• 𝑖𝑡𝑒𝑚_𝑖𝑑 > 300, 000: Test Set II which consists of the remain-
ing 20% of user-game interactions. The difference of this set
from Test Set I is the fact that this set consists of newer items
due to the split by sequential 𝑖𝑡𝑒𝑚_𝑖𝑑 , i.e, these games are
unseen during training and can be considered "new games"
(referred to as so hereon) as far the model trained on the pre-
vious set is concerned. Thus, data in this set is prone to the
cold start problem and is used for evaluating our methods
which explore solving this problem.

2.2 Game Metadata Dataset
This dataset is used to explore addressing the cold start problem.
Due to the user-game interactions only containing game and user
IDs, this additional information is obtained through the official
Steam Web API. While a lot of metadata is made available through
this API, the data we collect which seemed to be of interest are
described in Table 3.

Of the 10,978 games in the interactions dataset, metadata was
not available on the official Web API for approximately 700 of the

Can Item Metadata help combat the Cold Start problem? , ,

Table 3: Dataset Format

item_id (Game) Genres Price ($)

20 [Action, Indie] 12.99
300 [Survival, Shooting] 5.49
304930 [Adventure, Free to Play] 0.00

games. Interactions on these games are dropped in calculations for
the models involving requiring it.

3 Predictive Task
Given the user-game interaction and the metadata of each game,
our task is to predict the "scaled playtime" of a user for a game. We
consider the pre-processed user-game interaction data scaled from
1 to 5 as a scale of how much a user plays a game compared to the
average playtime for the game, which can in turn be thought of
as an implicit way to think about how much a user might like a
game which makes it more likely to be a better recommendation.
This claim makes it a good fit as a "rating prediction" task using
recommender system algorithms. Hereon, the scaled playtime vari-
able is represented using 𝑟𝑢,𝑖 and referred to as "rating" for ease of
understanding.

The tasks are evaluated using Mean-Squared Error (MSE) as
follows:

𝑀𝑆𝐸 = (ˆ𝑟𝑢,𝑖 − 𝑟𝑢,𝑖)2 (1)

4 Related Work
Althoughwe discuss relatedwork throughout our study, this section
provides a more concise and focused view of the ongoing works
that have motivated our methodologies, informed our research, and
shaped the models we employed in this project.

Hyperparameter Optimization for Recommender
Systems
Bergstra and Bengio (2012): Random Search for Hyper-Parameter
Optimization [2] This paper’s focus is on demonstrating how to
effectively get the best hyper-parameter values for tuning models.
The practice they describe, ’grid search’ is used throughout our
models in tuning hyperparameters such as the number of neigh-
bors considered for KNNs or the number of latent factors in our
SVD models. The search strategy helps us efficiently explore the
parameters space, getting the best yield from our models.

Collaborative Filtering with Neighborhood
Models
Koren (2010): Factor in the Neighbors: Scalable and Accurate Collab-
orative Filtering [8] This study describes how to make the baseline
KNN estimator model that we used in our studies. Although prior
works have been done on KNN models, this paper specifically fo-
cuses on enhancing baseline estimates for the cold start problem.
This approach served as the cornerstone for our integration of KNN
with baseline estimators.

Metadata-Driven Enhancements to
Recommender Systems
Frémal and Lecron (2017): The research Weighting Strategies for
a Recommender System Using Item Clustering Based on Genres [3]
explored the use of item metadata, such as genres, to improve rec-
ommendation accuracy. Inspired by this approach, we integrated
metadata-driven enhancements with latent factor models to exam-
ine whether additional contextual information could refine recom-
mendations and bolster performance.

Singular Value Decomposition in Collaborative
Filtering
Funk (2006): The blog Netflix Update: Try This at Home [4] by
Simon Funk popularized the use of SVD for collaborative filtering,
laying the groundwork for scalable and accurate recommender sys-
tems. The Surprise library’s SVD implementation, which is based
on Funk’s algorithm, played a central role in our study. Multiple
models in our experiments relied on SVD, underscoring its impor-
tance in achieving strong performance across both seen and unseen
data.

These works collectively informed our methodological frame-
work and experimental design, providing both theoretical and prac-
tical insights that enabled the development of robust hybrid models.
Our study builds upon and extends these contributions, particu-
larly in addressing challenges related to cold start scenarios and
optimizing hybrid approaches for diverse datasets.

5 Models
To compare performance across different methods, five different
recommender system models are used in the rating prediction.
Methods I & II which use factorization techniques are used as
baselines as they do not have the capability to combat the cold start
problem. Methods III & IV extend Methods I & II to incorporate
some mechanisms to combat the cold start problem using item
metadata. Method V uses a factorization technique solely on item
metadata technique taking 𝑖𝑡𝑒𝑚_𝑖𝑑 out of the picture completely.
The methods are detailed as follows:

5.1 Method I: Collaborative Filtering - SVD
A standard matrix factorization algorithm [9] used for rating predic-
tion in recommender systems is used as a baseline. The gist of this
method assumes that if there are many commonalities or patterns
in user-item interactions, these interactions can be approximated
as the product of two lower-rank factorization terms, one for user
and one for item. The low-rank value 𝑘 which may represent these
patterns are known as latent factors.

This generalization allows us to predict values of unseen user-
item interactions by approximating the factorization terms using
seen user-item interactions. The model prediction equation is as
follows:

ˆ𝑟𝑢,𝑖 = 𝜇 + 𝛽𝑢 + 𝛽𝑖 + 𝛾𝑢 .𝛾𝑖 (2)

where ˆ𝑟𝑢,𝑖 is the predicted rating, 𝜇 is the common bias term, 𝛽𝑢
and 𝛽𝑖 are the bias terms for users and games respectively and 𝛾𝑢

, ,

𝛾𝑖 are the latent factor matrix factorization term. During train, we
minimize the MSE loss with a regularization term as follows:

L = (ˆ𝑟𝑢,𝑖 − 𝑟𝑢,𝑖)2 + 𝜆(𝛽𝑢2 + 𝛽𝑖
2 + ||𝛾𝑢 | |2 + ||𝛾𝑖 | |2) (3)

where 𝜆 is the regularization factor.

5.2 Method II: Factorization Machine (FM)
Factorization Machines (FM) [12] extend traditional matrix fac-
torization by modeling all possible pairwise interactions between
features using factorized parameters. Unlike SVD which can only
handle user-item interactions, FMs can incorporate additional fea-
tures like item metadata. The model prediction equation for a FM
of degree d=2 is:

𝑦 (x) = 𝑤0 +
∑︁

𝑖 = 1𝑛𝑤𝑖𝑥𝑖 +
∑︁

𝑖 = 1𝑛
𝑛∑︁

𝑗=𝑖+1
⟨v𝑖 , v𝑗 ⟩𝑥𝑖𝑥 𝑗 (4)

where𝑤0 is the global bias,𝑤𝑖 are linear weights for each feature,
and v𝑖 , v 𝑗 ∈ R𝑘 are 𝑘-dimensional factorization vectors that model
the pairwise interactions between features 𝑥𝑖 and 𝑥 𝑗 . The feature
vector used in this method for each user-game interaction consists
of:

• One-hot encoded user IDs
• One-hot encoded game IDs
• Game genres (multi-hot encoded)
• Normalized price
• Scaled playtime

During training, we minimize the MSE loss with a regularization
term similar to Method I:

L = (𝑦 (x) − 𝑦)2 + 𝜆𝑤

∑︁
𝑖 = 0𝑛𝑤𝑖2 + 𝜆𝑣

∑︁
𝑖 = 1𝑛 |v𝑖 |2 (5)

where 𝜆𝑤 and 𝜆𝑣 are regularization parameters.

5.3 Method III (A): KNN Method with Baseline
Estimator

This model is primarily a build-up to Method III, which combines
the strongest aspects of the KNN baseline and SVD models. The
KNN model aggregates information from a pre-defined number of
neighbors, 𝑘 . Since there is no one-size-fits-all solution for KNN
algorithms, we specified a 𝑘 value using random and grid search
techniques (Bergstra and Bengio, 2012) [2]. To increase accuracy,
we incorporated baseline estimates as defined in Formula 3, Section
2.2 of (Koren, 2010) [8].

𝑟𝑢𝑖 = 𝑏𝑢𝑖 +
∑

𝑗∈𝑁𝑘
𝑢 (𝑖) sim(𝑖, 𝑗) · (𝑟𝑢 𝑗 − 𝑏𝑢 𝑗)∑

𝑗∈𝑁𝑘
𝑢 (𝑖) sim(𝑖, 𝑗)

where sim(𝑖, 𝑗) is the similarity between items 𝑖 and 𝑗 , defined
using the Mean Squared Difference (MSD) formula:

sim(𝑖, 𝑗) =
∑
𝑢∈𝑈 (𝑟𝑢𝑖 − 𝑟𝑢𝑖) (𝑟𝑢 𝑗 − 𝑟𝑢 𝑗)√︁∑

𝑢∈𝑈 (𝑟𝑢𝑖 − 𝑟𝑢𝑖)2 ·
∑
𝑢∈𝑈 (𝑟𝑢 𝑗 − 𝑟𝑢 𝑗)2

Limitations. Due to a large dataset, memory limitations arose on
local machines and Google Colab. For 𝑘 > 5, the training size
had to be reduced, affecting model robustness. This also prevented
experimenting with alternative approaches, such as embedding
metadata in vector representations.

5.4 Method III: SVD + KNN
After noticing that the SVD model outperforms KNN on test set I
but deteriorates on test set II, whereas the KNN model outperforms
the SVD model on test set II, we leverage the strengths of both
models to form this hybrid model.

This custom model integrates their complementary capabilities
to address key challenges in recommendation systems. Specifically,
it employs the SVD prediction algorithm for interactions with pre-
viously seen items, capitalizing on its superior performance in
modeling latent factors. Simultaneously, the model utilizes KNN’s
baseline estimator to predict ratings for unseen items, combating
the cold start problem by extrapolating preferences based on similar
users or items. This approach allows the model to balance preci-
sion in known contexts with the handling of new and sparse data
scenarios.

5.5 Method IV: Factorization Machine + KNN
Given the good performance of FastFM ALS and its limitation in
solving the cold start problem, it is worthwhile to test the power of
KNN combined with the FastFM ALS model. The plan was to run
the KNN used in Method III(A) on all the training data and test it
on the newer games to see its improvement. Due to the intrinsic
large size of the sparse matrix used in FastFM ALS, the memory
left for KNN is small, so this model is hard to get scaled. The final
training set reached 30000 samples with 3 nearest neighbors on
Google Colab.

5.6 Method V: Factorization Machine - Game
Metadata Only

This method is an extension of Method II and it explores the feasibil-
ity of a factorization machine using only the game metadata in the
rating prediction task. This method is different from all previous
methods in the fact that the factorization terms in this method used
do not contain the 𝑔𝑎𝑚𝑒_𝑖𝑑 information but rather tries to build a
predictor based on user interactions with the metadata of the game.
The 𝑔𝑒𝑛𝑟𝑒𝑠 and 𝑝𝑟𝑖𝑐𝑒 of the game are the metadata used in this
model. This work is similar to the method explored by [3] which
builds latent-factor models for each genre on the MovieLens dataset
[5].

However, the fact that 𝑔𝑎𝑚𝑒_𝑖𝑑 is ignored means this model
should be more robust to cold start problems due to the sole de-
pendence of game metadata which is available for newer games as
well.

6 Results
The results across models described in Section 5 are presented
in Table 4. Further elaboration and discussion of results for each
method is presented below.

Can Item Metadata help combat the Cold Start problem? , ,

Table 4: Results

Method MSE (Test Set I) MSE (Test Set II)

I (SVD) 0.3275 0.5684
II (FM) 0.4471 0.5821
III(A) (KNN) 0.4063 0.4397
III (SVD+KNN) 0.2855 0.2916
IV (FM+KNN) - 0.5884
V (FM-Metadata) 0.4378 0.5656

6.1 Method I
Method I implements the SVD factorization method of the Scikit-
Surprise library [6]. The optimal parameters are found using Grid
Search with the number of latent factors being set 5 and number of
epochs as 25 while all other parameters following default values
from the library. The low number of latent factors implies the
patterns among user-games are not as varied. The MSE of this
method on the test sets is used as a baseline to compare the proposed
methods. It can be noted that the MSE on Test Set II is significantly
higher than that on Test Set I. This behaviour is expected since
Test Set II consists of new games prone to the cold start problem
which this method handles solely by giving the user’s average
rating which is not necessarily a good heuristic.

6.2 Method II
Method II implements the ALS Regression method of the fastFM
library [1]. The model was trained with 𝑟𝑎𝑛𝑘 = 10 and 𝑛_𝑖𝑡𝑒𝑟 = 50
factors. From Table 4, we can observe that the Factorization Ma-
chine model achieves an MSE of 0.4471 on Test Set I and 0.5821 on
Test Set II. The higher MSE compared to the SVD baseline (Method
I) suggests that the additional complexity of modeling feature in-
teractions through factorization machines did not lead to improved
performance in this case. This could be attributed to the large scale
of the Steam dataset - with over 5 million user-item interactions,
the collaborative filtering signal (user-item interactions) appears to
be strong enough to create meaningful latent representations on its
own. In this scenario, the additional item metadata (genres, price,
and playtime) might actually introduce noise rather than valuable
signal, suggesting that when the interaction data is sufficiently rich,
simple collaborative filtering approaches may be more effective
than hybrid methods that incorporate content features.

6.3 Method III(A)
The KNNmodel performed worse than SVD (Method I), as expected.
SVD scales better with increased data sizes (Kabić et al., 2020) [10]
because the number of computations does not grow as rapidly
as in KNN. For KNN, each new training item requires at least 𝑘
new comparisons, increasing computational cost significantly. The
optimal value is chosen as 𝑘 = 3.

6.4 Method III
Unsurprisingly, this hybrid model outperforms both the standalone
SVD and KNN baselines. By integrating KNN’s baseline estimator
for new user/item predictions with SVD’s scalable and accurate

handling of seen interactions, the model demonstrates superior
overall performance and shows resilience in addressing cold start
challenges.

This is evident when comparing the MSE across Test Set I (con-
taining mostly seen interactions) and Test Set II (with previously
unseen interactions). While the hybrid model performs better than
standalone SVD on Test Set II, the differences in MSE are not sub-
stantial, suggesting that the contribution of KNN to mitigating
the cold start issue is relatively modest. This indicates that the
hybridization, while helpful, does not dramatically enhance perfor-
mance over SVD alone.

Nevertheless, the hybrid approach still outperforms the pure
KNN baseline both in accuracy and computational efficiency, par-
ticularly on unseen games in Test Set II. These results validate
the model’s ability to balance accuracy and adaptability, though
the extent of improvement over SVD in handling cold start issues
is less pronounced than anticipated. This finding highlights that
while hybrid models offer potential, the incremental gains may vary
depending on the data and context.

6.5 Method IV
The final training set reached 30000 samples with K = 3 on Google
Colab and the improvement inMSEwas limited, as shown in Table 4.
Larger training set enhances the performance of the model and we
expect further improvement of the model if run on larger memory.

To demonstrate the effectiveness of this model in ameliorating
the cold start problem, the ALS model and the ALS + KNN model
were run on small subsets of the training set. Table 5 shows the
improvement of the model run on these subsets.

Table 5: MSEs of model II and model IV on a subset of the
training set

Set MSE (ALS) MSE (ALS + KNN)

1 1.4004 0.5892
2 1.9474 0.5924

6.6 Method V
Method V implements the ALS Regression method of the fastFM
library [1]. The optimal parameters are found to be number of
latent factors as 2 and epochs as 100. The extremely low latent
factor count is unexpected due to the numerous count of genre
combinations, but as seen in previous methods, the patterns might
not be complex, i.e, it can be something as simple as a high-price
low-price differentiation or story-based or online differentation
which can still be represented using very few factors. This behavior
is also seen to be evident on rating prediction in the GoodReads
dataset [13]. From Table 4, it is noticed that the MSE for this method
is worse than other methods for Test Set I. This can be explained
due to the replacement of the user-game interactions in favour of
user-metadata interactions. However, this significant difference in
MSE on Test Set I suggests that this method is not worth the slight
improvement noted in MSE on Test Set II in comparison to the
baseline.

, ,

7 Conclusion & Future Work
Our study provides several key insights for recommender system
design in large-scale commercial settings:

• When interaction data is abundant (>5 million interactions
in our case), simple collaborative filtering approaches can
outperformmore complex hybrid methods as seen inMethod
I vs Method II and V. This suggests that the complexity of
incorporating metadata features may not always justify the
implementation overhead.

• Item metadata shows more promise in true cold start sce-
narios as seen in Method III which performs significantly
better on new games on Test Set II as compared to other
models which have no mechanisms to handle the cold start
problems.

• The trade-off between model complexity and performance
should be carefully considered based on the specific appli-
cation context. Our results show that simpler models (SVD)
achieved lower MSE compared to more complex approaches
(Factorization Machines with metadata), which challenges
the idea that more features necessarily lead to better recom-
mendations.

These findings extend beyond game recommendations and provide
valuable insights for the broader recommender systems commu-
nity. The counterintuitive result that metadata features do not al-
ways introduce more signal than noise as evidenced in Methods II,
IV and V in large-scale systems challenges common assumptions
about hybrid recommender systems. However, as seen in Method
III, metadata can be informative in certain scenarios as well. Thus,
the exploration of this work on the use of item metadata for recom-
mendations concludes that its impact remains highly dependent on
the type of interactions, the dataset, the category of metadata and
the models used.

7.1 Future Directions
Several promising directions emerge from our findings:

• Investigation of dynamic feature importance based on data
scale - understanding when metadata becomes less valuable
as interaction data grows

• Development of adaptive hybrid models that can automati-
cally adjust the weight of metadata features based on inter-
action data availability

• Exploration of more sophisticated metadata incorporation
techniques, such as attention mechanisms or graph-based
approaches

References
[1] Immanuel Bayer. 2016. fastFM: A Library for Factorization Machines. Journal of

Machine Learning Research 17, 184 (2016), 1–5. http://jmlr.org/papers/v17/15-
355.html

[2] James Bergstra and Yoshua Bengio. 2012. Random Search for Hyper-Parameter
Optimization. In The Journal of Machine Learning Research, 13(1), 281-30.

[3] Sébastien Frémal and Fabian Lecron. 2017. Weighting strategies for a recom-
mender system using item clustering based on genres. Expert Systems with
Applications 77 (2017), 105–113. https://doi.org/10.1016/j.eswa.2017.01.031

[4] Simon Funk. 2006. Netflix update: Try this at home. https://sifter.org/~simon/
journal/20061211.html

[5] F. Maxwell Harper and Joseph A. Konstan. 2015. TheMovieLens Datasets: History
and Context. ACM Trans. Interact. Intell. Syst. 5, 4, Article 19 (Dec. 2015), 19 pages.
https://doi.org/10.1145/2827872

[6] Nicolas Hug. 2020. Surprise: A Python library for recommender systems. Journal
of Open Source Software 5, 52 (2020), 2174. https://doi.org/10.21105/joss.02174

[7] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-
mendation. In 2018 IEEE international conference on data mining (ICDM). IEEE,
197–206.

[8] Yehuda Koren. 2010. Factor in the neighbors: Scalable and accurate collaborative
filtering. In ACM Transactions on Knowledge Discovery from Data (TKDD), 4(1),
1-24.

[9] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix Factorization
Techniques for Recommender Systems. Computer 42, 8 (2009), 30–37. https:
//doi.org/10.1109/MC.2009.263

[10] Gabriel Duque López Marko Kabić and Daniel Keller. 2020. A Refined SVD
Algorithm for Collaborative Filtering. In arXiv preprint arXiv:2012.06923.

[11] Apurva Pathak, Kshitiz Gupta, and Julian McAuley. 2017. Generating and person-
alizing bundle recommendations on steam. In Proceedings of the 40th International
ACM SIGIR Conference on Research and Development in Information Retrieval.
1073–1076.

[12] Steffen Rendle. 2010. Factorization machines. In 2010 IEEE International Confer-
ence on Data Mining. IEEE, 995–1000. https://doi.org/10.1109/ICDM.2010.127

[13] Mengting Wan and Julian McAuley. 2018. Item recommendation on monotonic
behavior chains. In Proceedings of the 12th ACM conference on recommender
systems. 86–94.

http://jmlr.org/papers/v17/15-355.html
http://jmlr.org/papers/v17/15-355.html
https://doi.org/10.1016/j.eswa.2017.01.031
https://sifter.org/~simon/journal/20061211.html
https://sifter.org/~simon/journal/20061211.html
https://doi.org/10.1145/2827872
https://doi.org/10.21105/joss.02174
https://doi.org/10.1109/MC.2009.263
https://doi.org/10.1109/MC.2009.263
https://doi.org/10.1109/ICDM.2010.127

	Abstract
	1 Introduction
	2 Dataset
	2.1 User-Game Dataset
	2.2 Game Metadata Dataset

	3 Predictive Task
	4 Related Work
	5 Models
	5.1 Method I: Collaborative Filtering - SVD
	5.2 Method II: Factorization Machine (FM)
	5.3 Method III (A): KNN Method with Baseline Estimator
	5.4 Method III: SVD + KNN
	5.5 Method IV: Factorization Machine + KNN
	5.6 Method V: Factorization Machine - Game Metadata Only

	6 Results
	6.1 Method I
	6.2 Method II
	6.3 Method III(A)
	6.4 Method III
	6.5 Method IV
	6.6 Method V

	7 Conclusion & Future Work
	7.1 Future Directions

	References

