
AimBot
An investigation into external memory and advanced prompting

Author - Mehul Maheswari)
mmaheshwari@ucsd.edu

1 Introduction

1.1 Problem Definition
Large Language Models (LLMs) have trended to-
wards increasing parameter sizes to improve their
performance across a wide range of tasks. How-
ever, recent advances demonstrate that smaller-
scale models, when combined with knowledge
bases (KBs) and effective prompting strategies,
can achieve comparable results while being more
efficient and interpretable (Borgeaud et al., 2022).
This project investigates strategies for integrating
KBs and optimized prompting techniques in gen-
erating high-quality, task-specific responses.

1.2 Project Goals and Outcomes
• Collect and pre-process data for an ex-

ternal memory solution. DONE. Success-
fully curated a KB in JSON format and en-
sured compatibility with the agent’s querying
pipeline.

• Investigate effectively transferring rele-
vant information from the KB to the LLM:
DONE. Implemented and validated strate-
gies to ensure seamless data access and re-
trieval for the agent.

• Design and optimize prompts to guide the
agent in generating high-quality, contextu-
ally accurate responses: DONE. Explored
and refined prompting techniques to enhance
the clarity and relevance of the model’s out-
puts.

2 Related work

The growth and popularity of large language mod-
els (LLMs) has been shadowed by significant re-
search into their scaling, usages, and enhancement
through external memory systems and prompting
techniques.

A critical aspect of LLMs’ utility lies in their
size and capability scaling. Brown et al. (2020)
introduced GPT-3, showcasing how increasing
model parameters can lead to a dramatic improve-
ment in performance across many tasks, establish-
ing the importance of scale in LLM development
(Brown et al., 2020).

However soon afterwards, incorporating exter-
nal memory into LLM architecture was shown
to achieve similar results. Borgeaud et al.
(2022) introduced RETRO, a retrieval-augmented
model demonstrating how access to a vast exter-
nal knowledge base can reduce model size while
maintaining high-quality output (Borgeaud et al.,
2022). This approach emphasized the role of
memory systems in scaling models effectively
without prohibitive computational costs from ex-
ploding hyper-parameters.

Simultaneously, the exploration of prompt-
ing strategies demonstrated that high quality re-
sponses can be generated outside of increased
parameters. Chain-of-Thought (CoT) prompting
has proven particularly effective for improving
multi-step reasoning, as detailed by Wang et al.
(2023), who provided an empirical study high-
lighting CoT’s ability to elicit structured reasoning
paths from models (Wang et al., 2023).

The effectiveness of prompting depends heav-
ily on its design. A systematic survey by Wei et
al. (2022) outlined strategies such as zero-shot
and few-shot prompting, emphasizing how high-
quality prompts directly influence LLM perfor-
mance on complex tasks (Wei et al., 2022). This
work demonstrates the need for thoughtful prompt
engineering to maximize task-specific results.

Finally, optimizing memory systems and re-
trieval mechanisms remains critical. A study by
Wu et al. (2023) presented techniques for aligning
external memory usage with task requirements,
ensuring that models efficiently access relevant in-



formation while avoiding unnecessary computa-
tional overhead (Wu et al., 2023).

Collectively, these studies show that LLM per-
formance is not solely a function of model size,
and that intelligent information retrieval and pro-
cessing can increase performance. This project
builds upon this foundation, and explores how to
implement these strategies to optimize model per-
formance.

3 Dataset and Preprocessing

Valorant players present a unique dataset char-
acterized by dynamic player performance met-
rics. Unlike traditional sports with more stan-
dardized statistics, Valorant’s competitive land-
scape requires more nuanced statistical interpreta-
tion, making it a great testing ground for advanced
knowledge base integration strategies.

3.1 Raw Data Overview
The initial dataset consisted of log files from three
major tournaments: VCT Challengers, Game
Changers, and VCT International. Across these,
I collected a total of 7,357 game files, amounting
to 101.1 GB of data. Each game file consisted of a
series of JSON events capturing different aspects
of gameplay. For instance, the initialization event
from a log file is shown below:

Listing 1: Example Game Log Event
{

"platformGameId": "val:004b09b1-4dc
9-4185-baff-9b1c66b3ef99",

"playerDied": {
"deceasedId": { "value": 2 },
"weapon": {

"fallback": {
"displayName": "",
"inventorySlot": { "

slot": "PRIMARY" },
"guid": "EE8E8D15-496B-

07AC-E5F6-8FAE5D4C7B
1A"

},
"type": "UNKNOWN"

},
"assistants": [

{ "assistantId": { "value":
7 } }

],
"killerId": { "value": 6 }

}
}

3.2 Data Preprocessing
Given the sheer volume and complexity of the raw
data, direct ingestion into a knowledge base was

far too expensive, and realistically infeasible. The
preprocessing pipeline was designed to achieve
the following:

1. Identify Relevant Information: Extract key
metrics from the logs, such as kills, deaths,
assists, combat score, and other performance-
related data.

2. Aggregate Player Data: Organize informa-
tion across multiple files to account for play-
ers participating in multiple games. I used
vlr.gg as a reference for how to structure this
information.

3. Format for Knowledge Base: Represent
each player’s aggregated performance as a
JSON object to facilitate fast querying and
compatibility with the knowledge base’s in-
dexing system.

Example Processed Entry An example of the
processed data is shown below. It encapsulates
a player’s performance metrics, both overall and
segmented by the agent roles they played:

Listing 2: Processed Player Data
{

"handle": "Stefanie",
"date": "2023-10-03T08:46:46",
"status": "active",
"first_name": "Stefanie",
"last_name": "Jones",
"home_team_name": "Version 1",
"home_team_acronym": "V1",
"career_statistics": {

"total_rounds_played": 157,
"attack_kda": 0.84,
"defense_kda": 1.48,
...

},
"player_statistics_per_agent": {

"Sentinel": {
"Killjoy": {

"total_rounds_played":
115,

"attack_kda": 0.71,
...

},
...

}
}

}

3.3 Rationale for JSON Representation
The decision to represent data as JSON objects
per player was driven by the requirements of
the knowledge base and the evaluation metrics.
This structure allows for efficient lookups of spe-
cific statistics, such as a player’s Kill-Death Ratio



(KDA) or average combat score. Additionally, the
format aligns with the focus on statistical evalua-
tion metrics, ensuring compatibility and flexibility
during knowledge base queries.

4 Evaluation Metrics

To evaluate the accuracy and reliability of re-
sponses generated by the model, I employed the
following baselines:

4.1 Statistics Match Score
The Statistics Match Score determines whether the
data referenced in the model’s response exists in
the knowledge base or corresponds to real-world
information. This metric is designed to get a quick
understanding of the models overall performance
accounting for hallucinations, or where the model
fabricates and misrepresents statistical data. Re-
sponses are assigned a score of 0 if they lack sta-
tistical references or contain hallucinated data, and
a score of 1 if the referenced statistics are verified
as accurate and present or not.

We check the validity of the information
through vlr.gg, an online platform that contains the
most recent statistics for Valorant players. The in-
formation from vlr.gg is also how the knowledge
base’s statistics are modeled, which helps stan-
dardize performance evaluation.

4.2 Error Classification
To gain deeper insight into incorrect responses, I
classify errors into the following categories:

1. Hallucination: The statistic is fabricated and
has no basis in the knowledge base or real-
world data.

2. Omission: The response does not include
statistics when they are contextually required.

3. Context Mismatch: The statistic exists, but
is irrelevant or inaccurately applied within
the response. For example, if one players
statistics get used as a response for another.

By analyzing responses through this frame-
work, we can identify failure patterns and in-
form the development of the knowledge base and
prompting strategies.

4.3 Response Latency
In addition to error classification metrics, I mea-
sured Latency, which is the time taken by the

model to generate an answer on average. This is
is a practical consideration for real-world applica-
tion, and although not crucial, not negligible.

PS: Note that this investigation and method did
not require the need for a test/train/validation split
or hyper-parameter tuning.

5 My Approach: Models

5.1 Model 0: Baseline
I chose AWS Bedrock as the platform for this
study due to its integrated knowledge base capa-
bilities, which streamline the investigation pro-
cess. Additionally, its ”traces” feature provides
insights into the LLM’s decision-making process
before generating a response, which would be use-
ful for analysis. Furthermore, because I chose to
use an existing third party service, I did not have to
worry about computational constraints, aside from
the storage for embedding representations with the
external memory data sources.

Among the available models on AWS Bedrock,
I selected Anthropic’s Claude 3 Sonnet for its
state-of-the-art capabilities. The initial prompt I
used was:

”You are a helpful agent that gives re-
sponses about Valorant teams and play-
ers. Include statistics in your re-
sponses.”

This prompt adheres to prompting conventions,
being concise, straightforward, and directed on
the evaluation metrics, which are heavily statistic-
oriented.

Example Query and Response:

Q: ”Build me a team of five players”
R: ”For a team of 5 Valorant players
focused on aggressive playstyles, here
is my recommendation: Duelist: TenZ
(NA) - One of the best aimers and Jett
players. Known for his aggressive en-
tries and clutch plays. Duelist: ScreaM
(EU) - Veteran FPS player with incred-
ible aim and movement. Plays agents
like Raze and Jett. Initiator: Sinatraa
(NA) - Former Overwatch pro with great
mechanics and game sense. Plays Sova
and other initiators. Controller: Hiko
(NA) - Experienced in-game leader and
strategic controller player. Known for
his Viper play. Sentinel: Dapr (NA) -



Solid sentinel player who supports his
teammates well with utility and clutch
plays.”

Statistics Match Score: 2.5
Hallucinations: 5 Omissions: 15

Context Mismatches: 0 Latency: 24.08s

Table 1: Results over 20 Queries

As shown in table 2, the baseline model often
failed to root its recommendations in statistical
data. In the few instances statistics were provided,
they were often outdated or simply incorrect.

5.2 Model 1: Initial Knowledge Base
Integration

5.2.1 Approach
The primary limitation of the baseline model was
the frequent omission of statistics, a critical short-
fall for the intended application. To address this, I
incorporated an external memory resource into the
architecture, leveraging Amazon Titan Text Em-
bedding v2 for its superior performance in embed-
ding and optimizing textual data for retrieval tasks
(Amazon Web Services, 2024).

The knowledge base employs a K-Nearest
Neighbors (KNN) retrieval mechanism facilitated
by Faiss, a library renowned for its efficiency in
vector search and clustering (Project, 2024; Re-
search, 2024). Given the JSON-based structure
of the external memory, I set a token limit of 300
for chunk-based retrieval, a parameter chosen to
balance the trade-offs between retrieval granular-
ity and response latency.

5.2.2 Results
Example KB Response:

”Sentinel”: {”Killjoy”:
{”total rounds played”: 47, ”at-
tack kda”: 1.0, ”defense kda”:
0.83, ”avg kills per round”: 0.53,
”avg assists per round”: 0.13,
”avg combat score per round”:
175.74, ”avg revives per round”: 0.0,
”avg damage dealt per round”: 105.83,
”avg first bloods per round”: 0.15,
”avg first deaths per round”: 0.09}},
{”handle”: ”Wo0t”, ”date”: ”2024-
04-10T08:29:38”, ”status”: ”active”,
”first name”: ”Mert”, ”last name”:

”Alkan”, ”home team name”: ”Team
Heretics”, ”home team acronym”:
”TH”}

Statistics Match Score: 14
Hallucinations: 0 Omissions: 6

Context Mismatches: 8 Latency: 16.45s

Table 2: Model 1 results over 20 queries

5.2.3 Analysis
The results from table 2 are polarizing because
they demonstrate both the strengths and chal-
lenges of the knowledge base retrieval. The in-
clusion of a knowledge base significantly im-
proved statistical retrieval as demonstrated by the
reduced hallucinations, and increased statistics
match score. However, several challenges remain:

1. Chunking Issues: The 300-token chunking
strategy frequently truncates JSON objects,
leading to incomplete or clipped statistics.
This undermines the model’s ability to pro-
vide accurate responses for larger player pro-
files.

2. Similarity Strategy: The reliance on co-
sine similarity for vector-based retrieval of-
ten skews the selection towards highly spe-
cific segments. This approach neglects the
broader contextual coherence required for re-
sponses involving multiple interrelated data
points.

3. Dynamic JSON Sizes: JSON size varies
based on the number of games played by
each player, making fixed-size chunking un-
reliable.

Another concern that was demonstrated in the
responses but not captured by the metrics was the
semantic variation in the answer that the LLM pro-
duced. Although statistics were often included,
how they were used ranged quite a bit. Ideally,
we would want to reduce this variation to ensure
a more defined path for searching statistics in our
knowledge base.

5.3 Model 2: Revised Knowledge Base
Integration and Advanced Prompting
Strategies

5.3.1 Approach
Building on the prior model, we can see avenues
for improvement using better chunking strategies



to ensure better statistic retrieval as well as oppor-
tunities for more consistency in knowledge base
lookup and answer generation.

To address the issue of contextually mismatched
statistics in Model 1, a more refined chunking
strategy is introduced. I used a hierarchical chunk-
ing approach which is designed to preserve the in-
tegrity of the data while reducing the likelihood of
fragmented player statistics. This strategy uses a
two-tier system with a parent chunk size of 1500
tokens and a child chunk size of 300 tokens. The
parent chunks encapsulate broader contexts, while
the child chunks break down the detailed statistics
for individual players. This segmentation allows
for more accurate retrieval of player data, ensuring
that relevant statistics are retained in their entirety
and improving the overall accuracy of the model’s
responses.

In addition to the chunking strategy, I drasti-
cally revised the prompting strategy to improve the
consistency and accuracy of the responses gener-
ated by the model. The new prompt is based on
the prompting guidelines from (Anthropic, 2024),
which provide detailed strategies for working with
Claude models. The revised prompt integrates ad-
vanced prompting techniques, including chain of
thought reasoning and XML tagging, to guide the
model. The ”chain of thought” method encourages
the model to follow a more consistent and struc-
tured logical flow when reasoning, while XML
tags are used to mark key elements within the re-
sponse, helping the model focus on specific pieces
of information from the player statistics.

5.3.2 Results

Statistics Match Score: 14.5
Hallucinations: 0 Omissions: 0

Context Mismatches: 6 Latency: 45.08s

Table 3: Model 2 results over 20 queries

5.3.3 Analysis
As demonstrated by table 3, the model improved
in consistently queering statistics with zero omis-
sions or hallucinations but still had some context
mismatches. Also, the response time increased
considerably.

One of the main hurdles in improving this
model is designing a prompt that is both specific
and effective. The prompt needs to be clear and
concise, while detailing more complex tasks such

as using the knowledge base to retrieve statistics.
As we can see, including CoT prompting comes
with a large response time increase, so finding
an optimific prompt requires some tenacity. On
the bright side, instances when statistical informa-
tion was omitted never occurred, suggesting the
prompting helped structure the way the LLM re-
sponds to queries.

Furthermore, despite the introduction of the
hierarchical clustering mechanism, the chunking
strategy still does not capture the full range of the
player JSON, clipping irrelevant player informa-
tion from one player with the other. This issue
contributed to context mismatches, which we can
see was a prevalent problem for this model.

5.4 Model 3: Knowledge Base with new
Chunking Strategy and Revised
Prompting

5.4.1 Approach
Although the last model was a significant step for-
ward from the first model and baseline, revisions
to both the chunking and prompting strategies can
lead to significant improvement.

For this model we implement a custom chunk-
ing strategy by spitting up each players data into a
separate file, and then feeding the separate doc-
uments for query processing. Instead of work-
ing with chunks, the system now queries docu-
ments which ensures player information is com-
plete and accurate. This strategy absolves the need
for a chunking mechanism along with the clipping
problem prior iterations have faced.

5.4.2 Results
Example question and response from model 3:

Q: Build a team of 5 players from VCT
challengers A: Here is my proposed 5-
player team from VCT Challengers: -
Duelist: Joseph ”clear” Allen (Raze,
Jett) - Excels at getting opening kills
with 0.19 first bloods per round on Raze
- High 1.38 attack KD and 236.77 com-
bat score per round on Raze - Con-
troller: Matias ”vaiZ” Matias (Brim-
stone, Harbor, Omen) - Versatile con-
troller with strong stats across multiple
agents - 1.87 attack KD and 227.8 com-
bat score per round on Brimstone - Ini-
tiator: Min-Seung ”SID” Kim (Gekko,
Sova) - Deadly with initiator agents like



Gekko (1.73 attack KD) - High 293.53
combat score per round on new agent
ISO - Sentinel: shao yi qun ”Nicc”
(Killjoy, Chamber) - Consistent per-
former on Killjoy with 1.44 attack KD
- Impacts the game through utility usage
with high assists per round - Sentinel:
Matias ”khz” Bugueño (Killjoy, Raze) -
Versatile and can play both sentinel and
duelist roles - Standout 1.64 defense KD
and 246.97 combat score on Raze

Statistics Match Score: 18
Hallucinations: 0 Omissions: 2

Context Mismatches: 0 Latency: 31.12s

Table 4: Results over 20 Queries

5.4.3 Analysis
As we can see, the custom chunking strategy has
succeed as the model is able to accurate assign
information to each player. By ensuring that the
chunks are what we intended them to be, we have
taken a major step forward compared to the pre-
vious model which tried to make sense of frag-
mented information.

Alongside the custom chunking strategy, we
also refined the prompting approach. In the prior
model, a separate prompt was included in the
knowledge base to instruct how the queried in-
formation should be processed. Although nec-
essary then, in this model the additional prompt
proved to be detrimental, as it interfered with the
model’s ability to retrieve and utilize the correct
data. The inclusion of this prompt caused in-
complete traces, likely due to its complex nature,
which conflicted with the clarity needed for ef-
fective chain of thought prompting. Upon remov-
ing this extra layer of instruction, the model’s re-
sponses regained their accuracy and coherency.

As a result of these changes, this model is not
only much faster than previous models, but it
also shows improved accuracy, especially for more
specific, less open-ended queries. For example,
questions about specific players are now handled
with higher precision, yielding responses that are
consistent and highly relevant.

6 Conclusion

This project investigated integrating external
knowledge bases and prompting techniques with

Large Language Models (LLMs) to improve re-
sponse accuracy and reduce hallucinations. My
findings reveal the following insights:

6.0.1 Knowledge Base integration
Model iterations demonstrated the impact of
knowledge base inclusion on reducing hallucina-
tions. Starting from the baseline model, we de-
veloped an approach that effectively minimized
incorrect information generation. The evolution
from the baseline to Model 3 showed a dramatic
improvement in the Statistics Match Score, rising
from 2.5 to 18 across 20 queries.

Our study found that the chunking strategy used
for to query the knowledge base is imperative and
must be considered from the standpoint of the data
source being used. Faulty implementations can re-
sult in incorrect or mismatched responses, along
with higher computational complexity if imple-
mented with chain of thought prompting.

6.0.2 Prompting
Prompting was a crucial mechanism for structur-
ing responses from the LLM, as well as utiliz-
ing information from the knowledge base. The
research across models showed the following in-
sights:

• Overly complex prompts can hinder model
performance

• Chain of Thought (CoT) prompting can im-
prove response structure

• The complexity of prompting directly im-
pacts response time and accuracy

6.0.3 Future Work
Future work may include the following directions:

• Exploring alternative embedding strategies to
improve chunking mechanisms

• Exploring lightweight prompting techniques
to reduce computational overhead

• Explore alternative chunking mechanisms

7 Acknowledgements

For all sections, ChatGPT was used to proofread
and format as appropriate.



References
Amazon Web Services (2024). Titan embedding mod-

els - amazon bedrock. https://docs.aws.
amazon.com/bedrock/latest/userguide/
titan-embedding-models.html. Accessed:
2024-12-03.

Anthropic (2024). Prompt engineering with claude. Ac-
cessed: 2024-12-03.

Borgeaud, S., Mensch, A., Hoffmann, J., et al. (2022). Im-
proving language models by retrieving from trillions of to-
kens. In Advances in Neural Information Processing Sys-
tems.

Brown, T., Mann, B., Ryder, N., et al. (2020). Language
models are few-shot learners. In Advances in Neural In-
formation Processing Systems.

Project, O. (2024). K-nearest neighbors (k-nn) index. Ac-
cessed: 2024-12-03.

Research, F. A. (2024). Faiss wiki. Accessed: 2024-12-03.

Wang, B., Min, S., Deng, X., et al. (2023). Towards under-
standing chain-of-thought prompting: An empirical study
of what matters. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics.

Wei, J. et al. (2022). A systematic survey of prompt engi-
neering in large language models: Techniques and appli-
cations. arXiv preprint arXiv:2402.07927.

Wu, Z. et al. (2023). Optimizing external memory in neural
language models. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing.

https://docs.aws.amazon.com/bedrock/latest/userguide/titan-embedding-models.html
https://docs.aws.amazon.com/bedrock/latest/userguide/titan-embedding-models.html
https://docs.aws.amazon.com/bedrock/latest/userguide/titan-embedding-models.html

